Initially and eventually dominating nonoscillatory solutions in integro-differential difference equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite difference method for solving partial integro-differential equations

In this paper, we have introduced a new method for solving a class of the partial integro-differential equation with the singular kernel by using the finite difference method. First, we employing an algorithm for solving the problem based on the Crank-Nicholson scheme with given conditions. Furthermore, we discrete the singular integral for solving of the problem. Also, the numerical results ob...

متن کامل

Nonoscillatory Half-linear Difference Equations and Recessive Solutions

Recessive and dominant solutions for the nonoscillatory half-linear difference equation are investigated. By using a uniqueness result for the zero-convergent solutions satisfying a suitable final condition, we prove that recessive solutions are the “smallest solutions in a neighborhood of infinity,” like in the linear case. Other asymptotic properties of recessive and dominant solutions are tr...

متن کامل

Asymptotic Decay of Nonoscillatory Solutions of General Nonlinear Difference Equations

The authors consider themth order nonlinear difference equations of the form Dmyn+qnf(yσ(n)) = ei, where m ≥ 1, n ∈N = {0,1,2, . . .}, an > 0 for i= 1,2, . . . ,m−1, an ≡ 1, D0yn = yn, Diyn = an∆Di−1yn, i = 1,2, . . . ,m, σ(n) → ∞ as n → ∞, and f : R → R is continuous with uf(u) > 0 for u = 0. They give sufficient conditions to ensure that all bounded nonoscillatory solutions tend to zero as n→...

متن کامل

Positive Solutions of Volterra Integro–differential Equations

We present some sufficient conditions such that Eq. (1) only has solutions with zero points in (0,∞). Moreover, we also obtain some conditions such that Eq. (1) has a positive solution on [0,+∞). The motivation of this work comes from the work of Ladas, Philos and Sficas [5]. They discussed the oscillation behavior of Eq. (1) when P (t, s) = P (t− s) and g(t) = t. They obtained a necessary and ...

متن کامل

Classification of Nonoscillatory Solutions of Nonlinear Neutral Differential Equations

Nonoscillatory solutions of a general class of second order functional neutral differential equations of the form

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1980

ISSN: 0022-247X

DOI: 10.1016/0022-247x(80)90171-7